Progressive Income-Contingent Student Loans

Yue Hua ${ }^{1} \quad$ George Kudrna ${ }^{1}$
${ }^{1}$ CEPAR, UNSW Sydney
June 13 | Australian Workshop on Public Finance, ANU

Background

- ICLs play dual roles:

1. Relax borrowing constraints;
2. Insure against income risks.

- Income-contingent loans (ICLs) adopted in US, UK, Canada, Australia, etc.
- Only Australia has explicitly progressive ICL.
- Past reforms have made ICLs more progressive in Australia.

What we do

Research question: How does ICL progressiveness affect:

1. Earnings risks,
2. Education choice,
3. Consumption, savings, and welfare?

Our approach:

- Earnings risk \rightarrow estimate earnings process directly
- Education, consumption, \& welfare \rightarrow heterogeneous-agent life-cycle model

Main results:

- More progressive ICL reduces risk in early repaying years
- Progressive ICL outperforms non-ICLs, but not linear ICLs.

Australian student loan system - HECS-HELP

- 1989: Gov't student loans established
- Income contingent repayment since beginning
- Automatic take-up and repayment
- 2007: Expanded to vocational education (VET)
- Multiple reforms over the years

High \& increasing coverage levels

Enrollment responds to reform

Income process

- We first study how repayment plan translates to repayment.
- We directly estimate income process from HILDA waves 1-20.
- Individual i of tenure t, cohort s, and edu e receives income $y_{i, t, s}^{e}$:

$$
\begin{equation*}
\operatorname{In} y_{i, t, s}^{e}=\underbrace{\alpha_{s}}_{\text {cohort dummies }}+\underbrace{\ln \bar{y}_{t}^{e}}_{\text {age- \& edu-specific profiles }}+\underbrace{\nu_{i, t}}_{\operatorname{AR}(1) \text { residuals }} \tag{1}
\end{equation*}
$$

1. Cohort effects

2. Age- \& education-specific earnings profiles

3. $A R(1)$ residuals

We estimate education-specific $\operatorname{AR}(1)$ processes for $e \in\{$ Below Year 12, Year 12, Vocational, Higher edu\}:

$$
\begin{align*}
& \nu_{i, 0}=\eta, \quad \eta \stackrel{i . i . d .}{\sim} \mathcal{N}\left(0, \sigma_{\eta}^{e}\right) \tag{2}\\
& \nu_{i, t}=\rho^{e} \nu_{i, t-1}+\epsilon_{i, t}, \quad \epsilon_{i, t} \stackrel{i . i . d .}{\sim} \mathcal{N}\left(0, \sigma_{\epsilon}^{e}\right) \tag{3}
\end{align*}
$$

($\rho^{e}, \sigma_{\epsilon}^{e}, \sigma_{\eta}^{e}$) are jointly estimated using GMM.

Moments \& parameter values

	$V\left(\nu_{0 \leq t \leq 5}\right)$	$V\left(\nu_{25 \leq t \leq 35}\right)$	$\operatorname{Cov}\left(\nu_{t}, \nu_{t-1}\right)$
Below Year 12	0.20	0.18	0.17
Year 12	0.22	0.19	0.18
VET	0.24	0.17	0.17
Higher Ed	0.19	0.24	0.22

	σ_{η}	σ_{ϵ}	ρ
Below Year 12	0.45	0.16	0.93
Year 12	0.49	0.18	0.91
VET	0.52	0.16	0.92
Higher Ed	0.43	0.10	0.98

Earnings volatility profile

Compare repayment reforms

Using the estimated $\operatorname{AR}(1)$ earnings process, we then:

1. Generate repayment dynamics $r p=\tau(y)$.
2. Compare dynamics under $97 / 98,04 / 05, \& 19 / 20$ reforms.

ICLs have become more progressive under the reforms.

Years needed to finish repaying

Mean \& volatility of repayment

Comparing key statistics

Policies	$97 / 98$	$04 / 05$	$19 / 20$

Comparing key statistics

Policies	$97 / 98$	$04 / 05$
\% NPV recovered	76.0	72.1
NPV deficit	8.6	10.0
Avg years to start	1.9	4.3
Avg years to finish	12.4	12.4

Comparing key statistics

Policies	$97 / 98$	$04 / 05$	$19 / 20$
\% NPV recovered	76.0	72.1	68.2
NPV deficit	8.6	10.0	11.4
Avg years to start	1.9	4.3	3.4
Avg years to finish	12.4	12.4	13.9
\% earnings sd			
\quad Overall	-0.6	-0.7	-0.8
0-5 year	-7.9	-9.1	-8.1
5-10 year	-0.2	-0.5	-1.7
10-15 year	1.8	1.7	1.3

Life-cycle model

We use the full life-cycle model to study effects on education, savings, \& welfare.

Education decision

A student aged 16...

Receives:

- Parental transfer;
- First EV1 preference shocks;

A student aged 16...

Receives:

- Parental transfer;
- First EV1 preference shocks;

Chooses:

- Leave before Y12 or finish Y12;
- Max the sum of lifetime util and pref shocks
- Becomes a worker if leaving before Y12
- Consumption/saving.
- No borrowing allowed

A student aged 18...

Receives:

- Savings from previous period;
- Second EV1 preference shocks;
- Exogenous HECS debt if VET or higher ed

A student aged 18...

Receives:

- Savings from previous period;
- Second EV1 preference shocks;
- Exogenous HECS debt if VET or higher ed

Chooses:

- Leave at Y12, VET, or higher ed;
- Max the sum of lifetime util and pref shocks
- Becomes a worker after graduation
- Consumption/savings
- No private borrowing;

A Worker...

Is identified by \{age, edu, private asset, remaining HECS debt \}

A Worker...

Is identified by \{age, edu, private asset, remaining HECS debt \}
Experiences:

- Risky income;
- Automatic HECS repayment;

A Worker...

Is identified by \{age, edu, private asset, remaining HECS debt \}
Experiences:

- Risky income;
- Automatic HECS repayment;

Chooses consumption/savings

- Private borrowing up to fixed limit.

External parameters

Group	Parameter	Value	Interpretation
Preliminary	σ	2	CRRA risk aversion
	r	4\%	Interest rate
	β	0.96	Discount rate
Pōlicy	$\bar{\phi}^{\text {ve }}$	$\overline{1} \overline{5}$	Fee $\overline{\text { for }}$ - vocational $\overline{\text { education }}$
	$\phi^{\text {he }}$	36	Fee for higher education
	L	10	Adult borrowing limit
	ω^{S}	18.2	Transfer, student
	ω^{W}	35	Transfer, adult
Āsset	$\overline{\mathrm{d}}$ - ${ }^{\text {c }}$ of \bar{b}_{t}	-	Asset distribution at age 16

SMM calibrate parameters

Parameter	Value	Description	Moments
δ_{1}	0.0171	Taste shock at 16	Year 10 share
δ_{2}	0.0139	Taste shock at 18	Year 12 share
ψ	-0.00438	Util cost of ed	Higher ed share
g_{1}	-0.481	Size of warm glow	Asset at 65
g_{2}	1458	Curvature of warm glow	Asset at 65, higher ed

College graduates accumulate assets later

Policy analysis

- We compare current HECS with three hypothetical policies

1. Stringent: Lower repayment threshold from $\$ 50,000$ to $\$ 0$
2. Non-contingent (US): Fixed amount of repayment over 15 years
3. Flat-rate (UK): Fixed rate of repayment $=9 \%$

- Main results:
- UK plan slight better but more costly;
- US plan reduces education the most.

Comparing three policies

Debt rundown \& consumption

Education is lowest under non-contingent loans

Benchmark	Counterfactual Δ			
	Stringent	US	UK	
	(1)	(2)	(3)	(4)

Education is lowest under non-contingent loans

	Benchmark	Counterfactual Δ		
		Stringent	US	UK
	(1)	(2)	(3)	(4)
Education				
\quad Less than Year 12	28.03	+0.71	+0.78	-0.18
\quad Year 12	41.68	+5.80	+6.42	-1.36
VET	4.99	-1.04	-1.90	+0.03
Higher Ed	25.30	-5.48	-5.30	+1.51

Education is lowest under non-contingent loans

	Benchmark	Counterfactual Δ		
		Stringent (2)	US (3)	UK
	(4)			
Education				
\quad Less than Year 12	28.03	+0.71	+0.78	-0.18
Year 12	41.68	+5.80	+6.42	-1.36
VET	4.99	-1.04	-1.90	+0.03
\quad Higher Ed	25.30	-5.48	-5.30	+1.51
Cost				
\quad NPV (\$1,000s)	24.51	+5.06	+3.10	-2.15
\% recovered	68.09	+14.04	+8.61	-5.98

Education is lowest under non-contingent loans

	Benchmark (1)	Counterfactual Δ		
		Stringent (2)	$\begin{aligned} & \text { US } \\ & \text { (3) } \end{aligned}$	UK (4)
Education				
Less than Year 12	28.03	+0.71	+0.78	-0.18
Year 12	41.68	+5.80	+6.42	-1.36
VET	4.99	-1.04	-1.90	+0.03
Higher Ed	25.30	-5.48	-5.30	+1.51
Cost				
NPV (\$1,000s)	24.51	+5.06	+3.10	-2.15
\% recovered	68.09	+14.04	+8.61	-5.98
Welfare				
C.E. (\$1,000s)	68.89	-0.09	-0.10	+0.02
C.E. for HE	66.75	-0.49	-0.29	+0.12

Conclusions

- Australia provides a good case study for ICLs
- Progressive repayment rates
- Long history w/ reforms
- Near-universal coverage
- Our results show:

1. Progressive ICLs reduce repayment in early years but increase later on;
2. Not yet clear if progressive ICLs perform better than linear ICLs.

- Future directions of research:
- Gender + labor supply; spousal joint repayment;
- Age-contingent repayment could be 2nd best;
- Repayment scheme may affect major choices.

Appendix

Student's optimization (age 16)

A student at age 16 receives:

- Parental transfer b_{t},
- Schooling preference shocks $\epsilon_{1}=\left(\epsilon_{1,1}, \epsilon_{1,2}\right)$,

And chooses education level

$$
\begin{equation*}
V_{16, t}^{S}\left(b_{t}, \epsilon_{1}\right)=\max \{\underbrace{\mathbb{E}_{y}\left[\tilde{V}_{16, t}^{W}\left(h d, b_{t}, y_{16, t}\right)\right]+\epsilon_{1,1}}_{\text {Leave before Year } 12}, \underbrace{\tilde{V}_{16, t}^{S}\left(b_{t}\right)+\epsilon_{1,2}}_{\text {finish Year } 12}\} \tag{4}
\end{equation*}
$$

- $\epsilon_{1, k}$ are Gumbel shocks, i.e. $\epsilon_{1, k} \sim E V\left(-\gamma, \delta_{1}\right)$.

Student's optimization (age 16; finishing year 12)

If she chooses to finish Year 12, she maximizes lifetime utility

$$
\begin{equation*}
\tilde{V}_{16, t}^{S}\left(b_{t}\right)=\max _{c, a}[\underbrace{\left[u\left(c_{16, t}\right)-\psi\right]+\beta\left[u\left(c_{17, t+1}\right)-\psi\right]}_{\text {period utility }}+\underbrace{\beta^{2} V_{18, t+1}^{S}\left(a_{18, t+2}\right)}_{\text {con't value }} \tag{5}
\end{equation*}
$$

Subject to

- Budget constraints:

$$
\left\{\begin{array}{l}
c_{16, t}+a_{17, t+1}=b_{t} \tag{6}\\
c_{17, t+1}+a_{18, t+2}=(1+r) a_{17, t+1}
\end{array}\right.
$$

- No borrowing:

$$
\begin{equation*}
a_{17, t+1}, a_{18, t+2} \geq 0 \tag{7}
\end{equation*}
$$

Student's optimization (age 18)

Similarly, a student at age 18 chooses one of three education levels:

$$
\begin{align*}
V_{18, t}^{S}\left(a_{18, t}\right)=\max \{\underbrace{\mathbb{E}_{y}\left[\tilde{V}_{18, t}^{W}\left(h g, a_{18, t}, y_{18, t}\right)\right]+\epsilon_{2,1}}_{\text {Year } 12} & \\
& \underbrace{\tilde{V}_{18, t}^{S}\left(v e, a_{18, t}\right)+\epsilon_{2,2}}_{\text {vocational }}, \underbrace{\tilde{V}_{18, t}^{S}\left(h e, a_{18, t}\right)+\epsilon_{2,3}}_{\text {higher edu }}\} \tag{8}
\end{align*}
$$

Where $\epsilon_{2, k}$ are Gumbel shocks:

$$
\begin{equation*}
\epsilon_{2, k} \sim E V\left(-\gamma, \delta_{2}\right) \text { for } k \in\{1,2,3\} . \tag{9}
\end{equation*}
$$

Student's optimization (age 18, higher edu)

If she chooses higher edu, she maximizes lifetime utility:

$$
\begin{align*}
& \tilde{V}_{18, t}^{S}\left(h e, a_{18, t}, \psi\right)=\max _{c, a} \underbrace{\sum_{(\alpha, \tau)=(18, t)}^{(21, t+3)} \beta^{\tau-t}\left[u\left(c_{\alpha, \tau}\right)-\psi\right]}_{\text {period utility }} \\
&+\underbrace{\beta^{4} \mathbb{E}_{y}\left[V_{22, t+4}^{W}\left(h e, a_{22, t+4}, y_{22, t+4}, d_{22, t+4}\right)\right]}_{\text {con't value }} \tag{10}
\end{align*}
$$

Student's optimization (age 18, higher edu)

Subject to

- Budget constraints:

$$
\begin{equation*}
c_{\alpha, \tau}+a_{\alpha+1, \tau+1}=(1+r) a_{\alpha, \tau} \tag{11}
\end{equation*}
$$

- No private borrowing:

$$
\begin{equation*}
a_{\alpha+1, \tau+1} \geq 0 \tag{12}
\end{equation*}
$$

- Accumulating HECS debt:

$$
\begin{align*}
d_{18, t} & =0, \tag{13}\\
d_{\alpha, \tau+1} & =d_{\alpha, \tau}+\phi^{h e} . \tag{14}
\end{align*}
$$

Worker's optimization

A worker at age α with education e, asset position a_{α}, and student debt d_{α} solves

$$
\begin{equation*}
V_{\alpha}^{W}\left(e, a_{\alpha}, y_{\alpha}, d_{\alpha}\right)=\max _{c, a} u\left(c_{\alpha}\right)+\beta \mathbb{E}_{y}\left[V_{\alpha+1}^{W}\left(e, a_{\alpha+1}, y_{\alpha+1}, d_{\alpha+1}\right) \mid y_{\alpha, t}\right] \tag{15}
\end{equation*}
$$

Subject to

- Income process (1),
- Budget constraint:

$$
\begin{equation*}
a_{\alpha+1}+c_{\alpha}+\underbrace{\left(d_{\alpha}-d_{\alpha+1}\right)}_{\text {HECS repayment }}=(1+r) a_{\alpha}+y_{\alpha} \tag{16}
\end{equation*}
$$

Worker's optimization (ctd)

- Private borrowing limit:

$$
\begin{equation*}
a_{\alpha+1} \geq-L \tag{17}
\end{equation*}
$$

- Automatic HECS debt repayment:

$$
\begin{equation*}
d_{\alpha+1}=d_{\alpha}-\tau\left(y_{\alpha}\right) y \alpha \tag{18}
\end{equation*}
$$

- $\tau(y)$ describes repayment plan.

