Background 00 Income & Repayment

Life-Cycle Model

Policy 0000 Conclusions O

Progressive Income-Contingent Student Loans

Yue Hua¹ George Kudrna¹

¹CEPAR, UNSW Sydney

June 13 | Australian Workshop on Public Finance, ANU

Background 00 Income & Repayment

Life-Cycle Model

Policy 0000 Conclusions 0

Background

- ICLs play dual roles:
 - 1. Relax borrowing constraints;
 - 2. Insure against income risks.
- ▶ Income-contingent loans (ICLs) adopted in US, UK, Canada, Australia, etc.
 - Only Australia has explicitly progressive ICL.
- ▶ Past reforms have made ICLs more progressive in Australia.

Background 00 Income & Repayment

Life-Cycle Model

Policy 0000 Conclusions 0

What we do

Research question: How does ICL progressiveness affect:

- 1. Earnings risks,
- 2. Education choice,
- 3. Consumption, savings, and welfare?

Our approach:

- Earnings risk \rightarrow estimate earnings process directly
- \blacktriangleright Education, consumption, & welfare \rightarrow heterogeneous-agent life-cycle model

Main results:

- More progressive ICL reduces risk in early repaying years
- ▶ Progressive ICL outperforms non-ICLs, but not linear ICLs.

Income & Repayment

Life-Cycle Model

Policy 0000 Conclusions 0

Australian student loan system – HECS-HELP

1989: Gov't student loans established

- Income contingent repayment since beginning
- Automatic take-up and repayment
- 2007: Expanded to vocational education (VET)

Background

Multiple reforms over the years

Background

•0

Income & Repayment

Life-Cycle Model

Policy

Conclusions

High & increasing coverage levels

Background ○● Income & Repayment

Life-Cycle Model

Policy 0000 Conclusions 0

Enrollment responds to reform

Background

Income & Repayment

Life-Cycle Model

Policy 0000 Conclusions 0

Income process

- ▶ We first study how repayment plan translates to repayment.
- ▶ We directly estimate income process from HILDA waves 1–20.
- Individual i of tenure t, cohort s, and edu e receives income y^e_{i,t,s}:

$$\ln y_{i,t,s}^{e} = \underbrace{\alpha_{s}}_{\text{cohort dummies}} + \underbrace{\ln \bar{y}_{t}^{e}}_{\text{age- \& edu-specific profiles}} + \underbrace{\nu_{i,t}}_{\text{AR(1) residuals}}$$
(1)

Background

Income & Repayment

Life-Cycle Model

Policy 0000 Conclusions 0

1. Cohort effects

Background 00 Income & Repayment

Life-Cycle Model

Policy 0000 Conclusions 0

2. Age- & education-specific earnings profiles

ntro 000 Income & Repayment

Life-Cycle Model

Policy 0000 Conclusions

3. AR(1) residuals

Background

We estimate education-specific AR(1) processes for $e \in \{\text{Below Year 12}, \text{Year 12}, \text{Vocational}, \text{Higher edu}\}$:

$$\nu_{i,0} = \eta, \quad \eta \stackrel{i.i.d.}{\sim} \mathcal{N}(0, \sigma_{\eta}^{e})$$
⁽²⁾

$$\nu_{i,t} = \rho^{e} \nu_{i,t-1} + \epsilon_{i,t}, \quad \epsilon_{i,t} \stackrel{i.i.d.}{\sim} \mathcal{N}(0, \sigma^{e}_{\epsilon})$$
(3)

 $(\rho^e, \sigma^e_{\epsilon}, \sigma^e_{\eta})$ are jointly estimated using GMM.

lr o

Income & Repayment

Life-Cycle Model

Policy 0000 Conclusions 0

Moments & parameter values

Background

	$V(\nu_{0\leq t\leq 5})$	$V(\nu_{25\leq t\leq 35})$	$\mathit{Cov}(\nu_t, \nu_{t-1})$
Below Year 12	0.20	0.18	0.17
Year 12	0.22	0.19	0.18
VET	0.24	0.17	0.17
Higher Ed	0.19	0.24	0.22

	σ_η	σ_ϵ	ρ
Below Year 12	0.45	0.16	0.93
Year 12	0.49	0.18	0.91
VET	0.52	0.16	0.92
Higher Ed	0.43	0.10	0.98

Background 00 Income & Repayment

Life-Cycle Model

Policy 0000 Conclusions 0

Earnings volatility profile

Background 00 Income & Repayment

Life-Cycle Model

Policy 0000 Conclusions 0

Compare repayment reforms

Using the estimated AR(1) earnings process, we then:

- 1. Generate repayment dynamics $rp = \tau(y)$.
- 2. Compare dynamics under 97/98, 04/05, & 19/20 reforms.

ICLs have become more progressive under the reforms.

Background 00 Income & Repayment

Life-Cycle Model

Policy 0000 Conclusions O

Years needed to finish repaying

Background 00 Income & Repayment

Life-Cycle Model

Policy 0000 Conclusions 0

Mean & volatility of repayment

Income & Repayment 00000000● Life-Cycle Model

Policy 0000 Conclusions 0

Comparing key statistics

Background

Policies	97/98	04/05	19/20
	.,	• • / • •	/

Background

Income & Repayment

Life-Cycle Model

Policy 0000 Conclusions O

Comparing key statistics

Policies	97/98	04/05	19/20
% NPV recovered	76.0	72.1	68.2
NPV deficit	8.6	10.0	11.4
Avg years to start	1.9	4.3	3.4
Avg years to finish	12.4	12.4	13.9

Income & Repayment

Life-Cycle Model

Policy 0000 Conclusions 0

Comparing key statistics

Policies	97/98	04/05	19/20
% NPV recovered	76.0	72.1	68.2
NPV deficit	8.6	10.0	11.4
Avg years to start	1.9	4.3	3.4
Avg years to finish	12.4	12.4	13.9
$\%~\Delta$ earnings sd			
Overall	-0.6	-0.7	-0.8
0-5 year	-7.9	-9.1	-8.1
5-10 year	-0.2	-0.5	-1.7
10-15 year	1.8	1.7	1.3

ntro 000 Background 00 Income & Repayment

Life-Cycle Model •0000000 Policy 0000 Conclusions 0

Life-cycle model

We use the full life-cycle model to study effects on education, savings, & welfare.

Background 00 Income & Repayment

Life-Cycle Model

Policy 0000 Conclusions 0

Education decision

ntro

Background 00 Income & Repayment

Life-Cycle Model

Policy 0000 Conclusions 0

A student aged 16...

Receives:

Parental transfer;

► First EV1 preference shocks;

ntro 000 Income & Repayment

Life-Cycle Model

Policy 0000 Conclusions 0

A student aged 16...

Receives:

- Parental transfer;
- First EV1 preference shocks;

Chooses:

- Leave before Y12 or finish Y12;
 - Max the sum of lifetime util and pref shocks
 - Becomes a worker if leaving before Y12
- Consumption/saving.
 - No borrowing allowed

Life-Cycle Model

Policy 0000 Conclusions 0

A student aged 18...

Receives:

- Savings from previous period;
- Second EV1 preference shocks;
- Exogenous HECS debt if VET or higher ed

ntro 000 Policy 0000 Conclusions 0

A student aged 18...

Receives:

- Savings from previous period;
- Second EV1 preference shocks;
- Exogenous HECS debt if VET or higher ed

Chooses:

- ► Leave at Y12, VET, or higher ed;
 - Max the sum of lifetime util and pref shocks
 - Becomes a worker after graduation
- Consumption/savings
 - No private borrowing;

Background 00 Income & Repayment

Life-Cycle Model

Policy 0000 Conclusions O

A Worker...

Is identified by {age, edu, private asset, remaining HECS debt}

ntro 000 Background

Income & Repayment

Life-Cycle Model

Policy 0000 Conclusions 0

A Worker...

Is identified by {age, edu, private asset, remaining HECS debt} Experiences:

- Risky income;
- Automatic HECS repayment;

ntro 000 Background 00 Income & Repayment

Life-Cycle Model

Policy 0000 Conclusions 0

A Worker...

Is identified by {age, edu, private asset, remaining HECS debt} Experiences:

- Risky income;
- Automatic HECS repayment;

Chooses consumption/savings

Private borrowing up to fixed limit.

detail

Background

Income & Repayment

Life-Cycle Model

Policy 0000 Conclusions 0

External parameters

Group	Parameter	Value	Interpretation
Preliminary	σ	2	CRRA risk aversion
	r	4%	Interest rate
	β	0.96	Discount rate
Policy	$\bar{\phi}^{ve}$	15	Fee for vocational education
	ϕ^{he}	36	Fee for higher education
	L	10	Adult borrowing limit
	ω^{S}	18.2	Transfer, student
	ω^W	35	Transfer, adult
Asset	dist of \bar{b}_t		Asset distribution at age 16

Background 00 Income & Repayment

Life-Cycle Model

Policy 0000 Conclusions 0

SMM calibrate parameters

Parameter	Value	Description	Moments
δ_1	0.0171	Taste shock at 16	Year 10 share
δ_2	0.0139	Taste shock at 18	Year 12 share
ψ	-0.00438	Util cost of ed	Higher ed share
g_1	-0.481	Size of warm glow	Asset at 65
g 2	1458	Curvature of warm glow	Asset at 65, higher ed

Background 00 Income & Repayment

Life-Cycle Model

Policy 0000 Conclusions 0

College graduates accumulate assets later

ntro

Background 00 Income & Repayment

Life-Cycle Model

Policy •000 Conclusions O

Policy analysis

We compare current HECS with three hypothetical policies

- 1. Stringent: Lower repayment threshold from \$50,000 to \$0
- 2. Non-contingent (US): Fixed amount of repayment over 15 years
- 3. Flat-rate (UK): Fixed rate of repayment = 9%

Main results:

- UK plan slight better but more costly;
- US plan reduces education the most.

Background 00 Income & Repayment

Life-Cycle Model

Policy 0000 Conclusions O

Comparing three policies

Background 00 Income & Repayment

Life-Cycle Model

Policy oo●o Conclusions 0

Debt rundown & consumption

Background

Income & Repayment

Life-Cycle Model

Policy 000● Conclusions 0

Benchmark	Counterfactual Δ		2
	Stringent	US	UK
(1)	(2)	(3)	(4)

Income & Repayment

Life-Cycle Model

Policy 000● Conclusions O

	Benchmark	Counterfactual Δ		Δ
	(1)	Stringent (2)	US (3)	UK (4)
Education	(-)	(-)	(-)	
Less than Year 12	28.03	+0.71	+0.78	-0.18
Year 12	41.68	+5.80	+6.42	-1.36
VET	4.99	-1.04	-1.90	+0.03
Higher Ed	25.30	-5.48	-5.30	+1.51

Income & Repayment

Life-Cycle Model

Policy 000● Conclusions 0

	Benchmark	Counterfactual Δ		
		Stringent	US	UK
	(1)	(2)	(3)	(4)
Education				
Less than Year 12	28.03	+0.71	+0.78	-0.18
Year 12	41.68	+5.80	+6.42	-1.36
VET	4.99	-1.04	-1.90	+0.03
Higher Ed	25.30	-5.48	-5.30	+1.51
Cost				
NPV (\$1,000s)	24.51	+5.06	+3.10	-2.15
% recovered	68.09	+14.04	+8.61	-5.98

Income & Repayment

Life-Cycle Model

Policy 000● Conclusions 0

	Benchmark	Counterfactual Δ		Δ
	(1)	Stringent (2)	US (3)	UK (4)
Education		. ,	. ,	. ,
Less than Year 12	28.03	+0.71	+0.78	-0.18
Year 12	41.68	+5.80	+6.42	-1.36
VET	4.99	-1.04	-1.90	+0.03
Higher Ed	25.30	-5.48	-5.30	+1.51
Cost				
NPV (\$1,000s)	24.51	+5.06	+3.10	-2.15
% recovered	68.09	+14.04	+8.61	-5.98
Welfare				
C.E. (\$1,000s)	68.89	-0.09	-0.10	+0.02
C.E. for HE	66.75	-0.49	-0.29	+0.12

ntro

Background 00 Income & Repayment

Life-Cycle Model

Policy 0000 Conclusions

Conclusions

- Australia provides a good case study for ICLs
 - Progressive repayment rates
 - Long history w/ reforms
 - Near-universal coverage
- Our results show:
 - 1. Progressive ICLs reduce repayment in early years but increase later on;
 - 2. Not yet clear if progressive ICLs perform better than linear ICLs.
- Future directions of research:
 - Gender + labor supply; spousal joint repayment;
 - Age-contingent repayment could be 2nd best;
 - Repayment scheme may affect major choices.

Appendix

Student's optimization (age 16)

A student at age 16 receives:

> Parental transfer b_t ,

Schooling preference shocks $\epsilon_1 = (\epsilon_{1,1}, \epsilon_{1,2})$,

And chooses education level

$$V_{16,t}^{S}(b_{t},\epsilon_{1}) = \max\left\{\underbrace{\mathbb{E}_{y}\left[\tilde{V}_{16,t}^{W}(hd,b_{t},y_{16,t})\right] + \epsilon_{1,1}}_{\text{Leave before Year 12}},\underbrace{\tilde{V}_{16,t}^{S}(b_{t}) + \epsilon_{1,2}}_{\text{finish Year 12}}\right\},$$
(4)

• $\epsilon_{1,k}$ are Gumbel shocks, i.e. $\epsilon_{1,k} \sim EV(-\gamma, \delta_1)$.

Student's optimization (age 16; finishing year 12)

If she chooses to finish Year 12, she maximizes lifetime utility

$$\tilde{V}_{16,t}^{S}(b_{t}) = \max_{c,a} \underbrace{[u(c_{16,t}) - \psi] + \beta [u(c_{17,t+1}) - \psi]}_{\text{period utility}} + \underbrace{\beta^{2} V_{18,t+1}^{S}(a_{18,t+2})}_{\text{con't value}}, \quad (5)$$

Subject to

$$\begin{cases} c_{16,t} + a_{17,t+1} = b_t, \\ c_{17,t+1} + a_{18,t+2} = (1+r)a_{17,t+1}, \end{cases}$$
(6)

► No borrowing:

$$a_{17,t+1}, a_{18,t+2} \ge 0.$$
 (7)

Student's optimization (age 18)

Similarly, a student at age 18 chooses one of three education levels:

$$V_{18,t}^{S}(a_{18,t}) = \max \left\{ \underbrace{\mathbb{E}_{y} \left[\tilde{V}_{18,t}^{W}(hg, a_{18,t}, y_{18,t}) \right] + \epsilon_{2,1}}_{\text{Year 12}}, \underbrace{\tilde{V}_{18,t}^{S}(ve, a_{18,t}) + \epsilon_{2,2}}_{\text{vocational}}, \underbrace{\tilde{V}_{18,t}^{S}(he, a_{18,t}) + \epsilon_{2,3}}_{\text{higher edu}} \right\}, \quad (8)$$

Where $\epsilon_{2,k}$ are Gumbel shocks:

$$\epsilon_{2,k} \sim EV(-\gamma, \delta_2) \text{ for } k \in \{1, 2, 3\}.$$
(9)

Student's optimization (age 18, higher edu)

If she chooses higher edu, she maximizes lifetime utility:

$$\tilde{V}_{18,t}^{S}(he, a_{18,t}, \psi) = \max_{c,a} \underbrace{\sum_{(\alpha, \tau) = (18,t)}^{(21,t+3)} \beta^{\tau-t} \left[u(c_{\alpha, \tau}) - \psi \right]}_{\text{period utility}} + \underbrace{\beta^{4} \mathbb{E}_{y} \left[V_{22,t+4}^{W}(he, a_{22,t+4}, y_{22,t+4}, d_{22,t+4}) \right]}_{\text{con't value}}, \quad (10)$$

Student's optimization (age 18, higher edu)

Subject to

Budget constraints:

$$c_{\alpha,\tau} + a_{\alpha+1,\tau+1} = (1+r)a_{\alpha,\tau}, \qquad (11)$$

No private borrowing:

$$a_{\alpha+1,\tau+1} \ge 0, \tag{12}$$

Accumulating HECS debt:

$$d_{18,t} = 0,$$
 (13)

$$d_{\alpha,\tau+1} = d_{\alpha,\tau} + \phi^{he}.$$
 (14)

Worker's optimization

A worker at age α with education *e*, asset position a_{α} , and student debt d_{α} solves

$$V_{\alpha}^{W}(e, a_{\alpha}, y_{\alpha}, d_{\alpha}) = \max_{c, a} u(c_{\alpha}) + \beta \mathbb{E}_{y} \left[V_{\alpha+1}^{W}(e, a_{\alpha+1}, y_{\alpha+1}, d_{\alpha+1}) | y_{\alpha, t} \right],$$
(15)

Subject to

- ▶ Income process (1),
- Budget constraint:

$$a_{\alpha+1} + c_{\alpha} + \underbrace{(d_{\alpha} - d_{\alpha+1})}_{\text{HECS repayment}} = (1+r)a_{\alpha} + y_{\alpha}, \tag{16}$$

Worker's optimization (ctd)

Private borrowing limit:

$$a_{\alpha+1} \ge -L,\tag{17}$$

Automatic HECS debt repayment:

$$d_{\alpha+1} = d_{\alpha} - \tau(y_{\alpha}) y \alpha \tag{18}$$